SPEAR Math Sample Pack

A comprehensive framework that:

- supports teaching and learning in Math problem solving
- is easy to use
- is flexible
- promotes independence
- encourages the transfer of process skills
- includes a resource of over 550 problems
- can be used alongside curriculum materials
- is well-established in schools across the UK and has now been rewritten for US elementary schools

The Challenge

- Problem solving in Math is under-developed in many elementary schools
- Few elementary school teachers are Math specialists
- Math problem solving is complex and pupils need to be taught the skills required
- Many teachers feel they should do more problem solving in Math but don't know where to start
- Pupils often struggle to transfer knowledge and understanding to unfamiliar contexts

The Framework

- A five step process which children can understand, remember and use
- Supported by a comprehensive range of materials: graded problems, records, self evaluation sheets, etc.
- Can be used alongside a range of Math curricula
- Accessible to children of all ages and abilities from Preschool to Grade 6 and above
- An ideal resource to use alongside schemes such as Singapore Math

Sample Pack

The contents of this sample pack have been selected to give you a clear understanding of what you get when you purchase a license for using SPEAR Math.

Overview of SPEAR Math Contents

Activity Records
Activity record sheets for each type of problem as well as general and simplified record sheets.

Help Me Cards

Help Me Cards for each stage of each type of problem for each grade to promote pupil independence:

Key Questions

Key questions in SPEAR Math colors at three levels of difficulty (K\&G1, G2\&3 and G4,5\&6)

Specific Key Questions for each type of problem

SPEAR Maths Key Questions
Search
Have I got everything ready in order to make a start?

Plan
Can I create a way to tackle the problem?

Explore
Can I work systematically (step by step)?

Apply
How will I record my thinking and working
out?

Review
Have I answered the question or solved the
problem fully?

SPEAR Maths Key Questions

SPEAR Maths Complete Key Questions

Next Step Records

Pupil progress records for all problem types for individual pupils and class records

Class Record K																				
Pupil Initials																				
- be able to use everyday language to talk about their work																				
- with support, be able to make connections and to so priolve simowledge to a new context practical problems in																				
- with support, be able to 'act out' a simple problem within a small group																				
- with support, be able to use practical resources to represent aspects of a problem																				
- be able to describe verbally, or with resources, possible solutions to a problem																				
- be able to count accurately the number of possible solutions to a simple problem																				
- be able to understand a 'not' statement in the context of a simple problem (L)																				
- with support, be able to record diagrams or resources																				
- with support, be able to recognize solutions with common characteristics and group them (FP)																				
- vith support, be able to understand key concepts eg that the number of possible solutions increases vith the number of options available (RRDP)																				
- with support, be able to check a solution for a simple problem and be are not acceptable																				
- may be able to use this information to find missing solutions or repeats (FP) (L)																				

Target Cards

Individual pupil Target Cards for Kindergarten to G6

Grade 1 Targets for Math Problem Solving	Date
With a little help, I can decide how I am going to start With a little help, I can decide on what's important to think about	
With a little help, I can tell an adult how I will use something I learned before to solve this problem	
I can say what I would like to use to help me solve the problem	
With a little help, I can act out the problem with other people	
With a little help, I can find all the answers that I can	
With help, I can decide how to solve the problem one step at a time	
I can remember that I can choose which clue to start with	
With a little help, I can explain why some clues go together to tell you something important	
I can explain to an adult what I did to try and solve the problem	
I can make drawings about the problem I am working on to show what I am doing	
I can drawl pictures to show my answer to the problem	
I can put my answers in groups that go	
together if this is helpful	

Grade 5 Targets for Math Problem Solving	Date	Date	Date	Date	Date	Date
I ean uas gidhrex, wri0ng, nu-tien and tak ta dearly explain the mathemadealideax 1 am uxing to aske the arablem						
I asn diuk abeut euexDera to de widh the greblem and th and anwer them uxng mathemadeal dean						
1 asn Quink af my ewn way to tadele a grablem 1 have never asen Before by romembenng kow 1 aslved smbiben in We asx, if Wialakelald						
1 asn uas my imagingase to care up whe new wa/d of Wying to malve a andion						
1 don't nesd to uns in ander to malve 1						
1 asm make a gaed dhases about Vhe way to reand al \#ne anwera 1 find Dat will be eaxext to de and deareat for athera to underxiand						
oblera to underatand a srablem bellis						
I asn arganixe the imserantinfomaton inta a lixt er table, ax 1 dsads, in adter to ase what miplt be mix ca						
1 azn explain my dhaiga about whars 1 diartal with Via grablem and gut ather dua ints a anwble adter of impartanaz						
1 ann kesp readinall Qn factiand loekng forfacta whe go tracther to tall me asmathing msatant and hely me nalve the grablem						
I asn ehacye ans giase of ifformatan and xas what haspena when 1 uat Wia informatanin tha smblem						
1 asn writa dewn my arowera ma dast and aranixad 						
underiand exsaty whetitia talling ms, for exams which amwern are mas allowed						
WMauthelg, 1 asn find a way to wakk Matalowa me to be dear absut what 1 leve triad and what 1 aill meat to do						
1 esn ehaces to anly reard what1 nesdto resend and 1 wan mallansteal dean to enc reasma						
1 asnlask asrefoly for samerna, dexanbe any sawtrma 						
1 azn dexeribe the gattam 1 have found m a way that adier seagle ean underiand and un the sathernts asy what anebler rexult weuld be, for example f1 uxid a mudh braser mu-ber						
Whauthelg, 1 ezn elocxe ©re bext way to erganix - 						
to exala a deaty kow 1 kow my arowerf() are astes!						
I asn uaz what! have lazmadin ere preblem to asy what 1 expeet to find in athar orabiera brfare 1 da tham						
Whathelg, 1 asn explainhow 1 kow even for dit allt grablana maliviç lata of ifformaten						
$\begin{aligned} & \text { Whast help, } 1 \text { azn make aurs } 1 \text { alwoy asy what und mor } \\ & \text { anwar in masuradin } \end{aligned}$						

Self Evaluation Sheets

Self Evaluation Sheets for each type of problem with or without a teacher's column.

Name	Date		
Problem Title			
I read through the problem carefully and made sure that I understood what it was about			
I thought about similar problems I had seen in the past and decided whether I could use a similar approach			
I had a way to start exploring the problem			
I had a system for deciding on the information needed to describe the pattern			
I worked systematically, starting with the simplest case			
I organized the data I collected into a list or table to help identify any patterss that there were			
I chose an appropriate way of recording my ideas about what came			
next in the pattern			

| Name | Date |
| :--- | :--- | :--- |
| Problem
 Title | |
| I read through the problem carefully and made sure that I
 understood what it was about | |
| I thought about similar problems I had seen in the past and decided
 whether I could use a similar approach | |
| I had a way to start exploring the problem | |
| I identified the given facts and put them in order (I prioritized them) | |
| I looked for any relationships and patterns in the information given | |
| I worked systematically | |
| I had a way to use one piece of information at a time and see what
 effect it has, then to keep one thing fixed and test the other | |
| I chose an appropriate recording system | |
| I used the recording system to organize the information given in the
 problem | |
| I checked my work to make sure it was accurate | |
| I checked for any repeats and removed them | |
| I checked that the answer met all the criteria | |
| I decided if I had fully answered the question or solved the problem | |

\mathbf{S}	earch
\mathbf{P}	lan
E	xplore
A	pply
R	eview

\mathbf{S}	earch
\mathbf{P}	lan
\mathbf{E}	xplore
\mathbf{A}	pply
\mathbf{R}	exiew

SPEAR Graphics

SPEAR graphic with key questions for each problem type:

Simplified SPEAR graphic with icons for younger children:

Teachers' Guides

Teachers' Guides for all problem types containing Statements of Attainment with examples of achieving each objective and suggested next teaching steps.

Grade 1 Teachers' Guide

Grade	Descriptor	Example	Next Teaching Steps
Grade 1	with limited support, be able to find a starting point for solving a problem, identifying key facts and relevant information	Is able to choose from the (range of) resources available and decide how to use them to solve the problem Is able to solve problems involving addition, subtraction, multiplication and division in the context of numbers, measures or money	Create opportunities for children to use prior mathematical knowledge to solve problems eg you have $\$ 2$, buy two items from the class shop to spend as much of your $\$ 2$ as you can. Create opportunities for pupils to identify resources that are not immediately available
	- with limited support, be able to transfer knowledge and use it to solve problems	With limited support, is beginning to transfer mathematical knowledge and use it to solve problems eg find the difference between two ribbons that are 24 inches and 35 inches long; is able to recognize the connection between the number of wheels on three cars and the number of legs on three cows	Create opportunities for pupils to use classroom discussions to break into a problem, recognizing similarities to previous work and suggesting different approaches that could be used to solve it eg by asking questions such as 'have you done anything like this before?' and 'how could we find out?'
	- be able to use practical resources to accurately represent aspects of a problem	With support, is able to use apparatus, diagrams, role play etc. to represent and clarify a practical problem and so identify the mathematical knowledge needed to solve it	Create opportunities for children to identify the resources they require, including resources that are not immediately available eg by asking 'what would you like to use to help you?'
	- with some independence, be able to 'act out' a simple problem within a small group	Is beginning independently to be able to choose the mathematics needed to explore simple problems through role-play eg to make different towers using three blocks of different colors	Create opportunities for pupils to begin to move from 'acting out' to only working with practical apparatus or to using diagrams to solve the problem eg by asking questions such as 'could you find a way to draw your ideas?'
	- with limited support, be able to find examples that satisfy the rules of a simple problem (FP)	With limited support is able eg to find ways to get a total of four using 1 to 5 digit cards	Create opportunities for pupils to work with increasing independence on a range of problem contexts requiring them to find examples that satisfy the rules of the problem, sometimes by keeping one thing the same

Pupil Passports

Suggested collections of graded and ordered problems arranged termly for K to G5 classes. Each passport contains a mixture of problem types of increasing levels of difficulty and includes a brief description of each problem and necessary prior knowledge:

Type					G4 Third Quarter			
D	L	P	R	W	Title	Description	Necessary Prior Knowledge	Date/ Comment
-					D27 Fun with Pentominoes	Find all 5 -square pentominoes (and 4-square, and 3-square)	Work systematically. Understand reflective and rotational symmetry	
		-			P54 Island Menu	Combinations of items for dinner on a desert island	Be able to work systematically	
		-			P48 Bus Routes	Explore routes on a simple (6 node) network. Work out costs of routes	Add mentally small numbers Understand networks	
			-		R34 Odd Adding	Totals of series of odd numbers starting with 1	Recognize square numbers	
*					D34 Five Rectangles	How many squares can be arranged to make exactly five different rectangles?	Understand simple factors	
	-				134 Birthday Presents	Use clues to work out who gave which present to whom	Be able to work systematically	
	-				136 How Old?	Use clues to work out the ages of 4 people	Be able to work systematically	

Problems

Over 550 problems covering Kindergarten to Grade 6 and all problem types in an easy to use searchable database. In addition, there are Preschool ideas for Math problem solving. New problems are being added all the time. Many problems now include readymade resources such as empty tables, as well as extension and support materials. All problems include complete answers. Over 100 of the problems include simplified versions covering the same concepts.

Preschool Ideas

These activity sheets are intended to be used by adults to inform their support of pupils as they experience learning opportunities. Each sheet includes an activity, resources and focusing and extending questions, as well as key objectives:

Examples of Problems: Diagram and Visual Puzzles

-ant 2012 Source Mathemaikal Cullengestor Able Pupitir

D25

D61

D64
Odd Square

Put the numbers $1-9$ in the circles so that the difference Put the numbers $1-9$ in the circles so that the
between each pair of joined numbers is odd:

A 'difference' is what you get when subtract the smaller number from the larger number
Note: there are lots of ways to do this

Logic Problems

L5
Sally's Super Sandwich Shop

Sally runs a sandwich shop. She gets a very muddled order for lunchtime sandwiches from the office next door. Can you sort it out using the clues?

How many of each sandwich must Sally make for the office? Sandwiches can be brown bread or white bread
They can be cheese or salod.
Order
Order
We need 6 white bread sandwiches.
We need 2 white bread sandwiches with cheese.
We need 9 cheese sandwiches.
We need double the number of
Wendwiches as whe number bread salad srown bread salad
sanches.

OANL 2012 Source PAs Probem Soling Defs 1386200566

L28

$K \times A=D F$	Each letter (in the equations on the left of the page) stands for a single digit.
$F \times A=B D$	Where there ore two letters next to each other, this stands for a two-digit number.
$D \times A=H$	Each letter stands for the same digit throughout all the equations.
$J \times A=B E=D G$	Can you work out what digit each letter stands for?
$B \times A=B K$	Hint: You don't have to start at the topt
$G \times A=A B$	
$B C \times A=A C$	
$B D \times A=A H$	
$B B \times A=A A$	
$A \times A=J$	

WE SOUce Untrown

Six clowns stand in a line. Two have red noses, two have blue noses and two have green noses.

Use the clues to decide the colour of each clown's nose: There is one nose between the two red noses There are three noses between the two green noses (There are two possible answers that fit these clues)
Now find as many answers as you that match these clues: Now finc as many answers as you that
The green noses are next to each other There is a blue nose on one end of the line but the other blue nose
Thers. is not on the other end of the line The red noses are not next to each other

Here are the rules:
Start with seven cubes or counters
Take turns
When it's your turn you must take one or two cubes The person who tokes the last cube is the loser Can you see how to win?
Remember: the person who takes the last cube is the loser
When you have worked out how to win every time, try making the person who takes the last cube the winner. How can you win now?

oawe 2012

L29
Nicknames

Amy, Billy, Chloe, Danielle and Emma each own a lunchbox. The lunchboxes are in a straight line in the dining hall. Each lunchbox is a different colour and contains a sandwich, a drink and a piece and a different piece of fruit. Who has a pear for lunch?

Facts:
Amy has ored hunchbox
Doniele has abonave for linch

Chloe ony eatst jom sandwiches
The firist lucchbox belongs to
The first Iuchbox belongs to Emma
The luchboo in the midde contains milk

The ouner of the vellow linchbox has a han sonowich.
The green lunchbox is on the left of the white Anchboox

The apple is in the lunchbox next to the one with the
The ouner of the chesse sandiwich has sola to dovink.
The owner of the chesse sendwich has cola to drink
The water-drinker's box is next to the ego eater's box.

Finding All Possibilities Problems

P43
Lining Up

In how many different orders can a group of children line up
at the door?

What about three people? Four people?
Put this information into a table and look for a pattern?
In how many orders can 10 people line up?
Can you find the general rule: How mary orders for N people?

One morning you get dressed in the dark. You reach into your clothes cupboard and take out a top, a pair of trousers and a pair
of socks without looking. of socks without looking.
How many different possible outfits are there?
If you bought a yellow tracksuit with matching socks, how many more possibilities will there be?
Show your thinking.
mor

P25 Three Monkeys

Three monkers ate a total of 25 nuts.
Each of them Each of them ate a different odd number of nuts.

P54

Island Menu

- ane 2012
$P 144$ Three Hops to 20

Finding Rules and Describing Patterns Problems

In every round the winners of each game progress to the next round, the losers are out. If there is an odd number of people in a
round, one player has a bye' to the next round. round, one player has a 'bye' to the next round. How many games of tennis will be played in the tournament
Look at tournaments with different numbers of players Con you wite a general mers wors Can you write a general rule to work out the number of games
played for any number of ployers starting a tournament? played for any number of ployers starting a tournament?

$R 46$

R24
The $49^{\text {th }}$ Counter

OAWt 2012

R27 Sequence of Shapes

Can you see how the pattern develops?
Make a table of your results:

How many cubes will there be in Shape 10? How many cubes will there be in Shape 100?

Find a general rule for how mary cubes there are in 'shape n where ' n ' stands for 'any shape you choose'

R44 Square \& Triangular Numbers
Test this statement and decide if it is true
'Any square number is the sum of two consecutive triangular numbers'
For example:
$4=1+3 \quad 4$ is a square number 1 and 3 are consecutive triangular numbers
Find other examples that match the statement.
Is the statement always true? Explain your thinking.
Square Numbers: 1, 4, 9.
$16,25,36,49,64,81$,
100 etc.

100 etc.
Triangular Numbers: 1, 3.
$6,10,15,21,28,36$,
45 etc.

- Use a systersatic spprococh to salve the problem

Word Problems

There are currently 125 Y1-Y6 Word Problems in the SPEAR Math Problem Bank:

The twins collected some animal stickers. They each had the same
total number. They stuck some in their sticker books and kept total number. They stuck
some loose for swops.

是 28
Winstonh had 3 full sheets and 4 loose stickers. Wendy had 2 full sheets and 12 loose stickers.
Every full sheet has the same number of stickers. How many stickers are there in a full sheet?

:

Find as many different ways as you can to complete the following equation:

Organise your answers into groups of similar types

W79

W48 Hens and Rabbits

AWE 2012 Source Untrown

Other Resources included in SPEAR Math

How to identify the type of problem

Coming Soon

- Core Materials for Grades 7 and 8
- Problems for Grades 7 and 8

All materials © AWE 2015

Do you want to help develop SPEAR Math?

Get in touch with us and tell us what your pupils need. We are always looking for Development Partners to work with us to improve our resources.

